10.1/13.1 Parametric Curves Intro (2D and 3D)

Parametric equations:

$$
x=x(t), y=y(t), z=z(t)
$$

To plot, you select various values of t, compute $(x(t), y(t), z(t))$, and plot the corresponding (x, y, z) points.

The resulting curve is called a parametric
 curve, or space curve (in 3D).

We also like to write the equation in vector form:

$$
\begin{aligned}
\stackrel{\rightharpoonup}{\boldsymbol{r}}(t) & =\langle x(t), y(t), z(t)\rangle \\
& =\text { a position vector for the curve }
\end{aligned}
$$

i.e. if the tail of this vector is drawn from the origin, the head will be at $(x(t), y(t), z(t))$ on the curve.

Various Parametric Facts:

1. Eliminating the parameter
(a) Solving for t in one equation, substitute into the others.
(b) Use $(\sin (u))^{2}+(\cos (u))^{2}=1$.

This gives the surface/path over which the motion is occurring.

All points given by the parametric equations: $x=t, y=\cos (2 t), z=\sin (2 t)$ are on the cylinder: $y^{2}+z^{2}=1$

All points given by the parametric equations: $\mathrm{x}=\mathrm{t} \cos (\mathrm{t}), \mathrm{y}=\mathrm{t} \sin (\mathrm{t}), \mathrm{z}=\mathrm{t}$ are on the cone: $z^{2}=x^{2}+y^{2}$

2. Intersection issues:

(a) To find where two curves intersect, use two different parameters!!!
We say the curves collide if the intersection happens at the same parameter value.
(b) To find parametric equations for the intersection of two surfaces, combine the surfaces into one equation. Let one variable be t and solve for the others.
(Or use $\sin (\mathrm{t}), \cos (\mathrm{t})$ if there is a circle involved)

3. Basic 2D Parametric Calculus

(Review of Math 124):
From the chain rule $\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}$.
Rearranging gives

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\text { slope. }
$$

Note that if $y=f(x)$, this says

$$
\frac{d}{d x}(f(x))=\frac{\frac{d}{d t}(f(x))}{d x / d t}
$$

So the $2^{\text {nd }}$ derivative satisfies:

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left(f^{\prime}(x)\right)=\frac{\frac{d}{d t}\left(f^{\prime}(x)\right)}{d x / d t}
$$

4. Vector Calculus

If $\quad \overrightarrow{\boldsymbol{r}}(t)=\langle x(t), y(t), z(t)\rangle$,
we define
$\overrightarrow{\boldsymbol{r}}^{\prime}(t)=$
$\lim _{h \rightarrow 0}\left\langle\frac{x(t+h)-x(t)}{h}, \frac{y(t+h)-y(t)}{h}, \frac{z(t+h)-z(t)}{h}\right\rangle$
so $\overrightarrow{\boldsymbol{r}}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$.

We also define

$$
\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)=\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t), z^{\prime \prime}(t)\right\rangle
$$

In 13.3, we will see that $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)$ gives information about the curvature.
In 13.4, we will see that
$\overrightarrow{\boldsymbol{r}}^{\prime}(t)$ is a velocity vector,
$\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|$ is the speed, and
$\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)$ is an acceleration vector.
We also define

$$
\int \overrightarrow{\boldsymbol{r}}(t) d t=\left\langle\int x(t) d t, \int y(t) d t, \int z(t) d t\right\rangle .
$$

Morale, do derivatives and integral component-wise.

Ex: Consider $\overrightarrow{\boldsymbol{r}}(t)=\langle t, \cos (2 t), \sin (2 t)\rangle$.
(a) Find $\overrightarrow{\boldsymbol{r}}^{\prime}(t),\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|$, and $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)$.
(b) Find $\overrightarrow{\boldsymbol{r}}(\pi / 4)$ and $\overrightarrow{\boldsymbol{r}}^{\prime}(\pi / 4)$.
(c) Give the equation for the tangent line at $t=\pi / 4$

5. Arc Length

The length of a curve from $t=a$ to $t=b$ is given by

$$
\begin{gathered}
\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t \\
=\int_{a}^{b}\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right| d t
\end{gathered}
$$

(Note: 2D is same without the $z^{\prime}(t)$).
We call this arc length.
The arc length from 0 to u is often written as

$$
s(u)=\int_{0}^{u}\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right| d t
$$

We call this the arc length function.

